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Executive Summary 
 
Constructing a prior distribution for a Bayesian analysis with input from subject matter experts, 
a process called “elicitation,” can be challenging. Their knowledge may not neatly fit the 
mathematical construct of the analysis which can confound the translation from words and 
thoughts to statistical distributions. This paper uses a representative scenario to illustrate two 
ways for analysts to help with this translation: transforming parameters to new ones that are 
meaningful to the experts and presenting the prior distribution in graphical products (charts and 
plots) that permit experts to assess the plausibility of the prior. Analysts may use either 
technique or both as desired. 
 

Keywords: Bayesian, prior, transform



 

 
 

Table of Contents 

Executive Summary ..................................................................................................... i 

Introduction ................................................................................................................ 1 

Working Example ........................................................................................................ 1 

Technique #1: Parameter Transformation .................................................................. 2 

Step 1: Defining the New Parameters ............................................................................... 2 

Step 2: Constructing the Prior with the New Parameters .................................................... 3 

Step 3: Transforming the Prior ......................................................................................... 5 

Technique #2: Sampling the Prior .............................................................................. 6 

Technique #2: Repeated with a Different Prior .......................................................... 7 

Conclusion ................................................................................................................... 9 

References .................................................................................................................. 9 

 
 
  



1 
 

Introduction 
 
Bayesian statistics is garnering attention in the Department of Defense (DOD) test and 
evaluation (T&E) community because it provides a mechanism to aggregate understanding of a 
system’s behavior from a variety of sources. One source to aggregate understanding, which is 
the focus of this paper, is from subject matter experts (SMEs) who can provide insight into what 
may be expected from a system. This process of collecting knowledge from SMEs is called 
“elicitation” (Garthwaite, 2005). Once elicited, SME insight will take the form of statistical 
distributions capturing both prediction and uncertainty–called the “prior” for short. This insight 
will later be combined mathematically with test results to provide the updated, refined 
“posterior” distribution. The posterior distribution is then used for inference and decision-
making. An advantage of SME input is it can mitigate some of the uncertainty from a small data 
set; however, specialized skill and experience is needed to avoid misleading outcomes. A non-
technical explanation of Bayesian statistics, including benefits and risks of employing it, can be 
found in Bayesian Methods in Test and Evaluation: A Decision-Maker’s Perspective (Sieck & 
Kolsti, 2022).  
 
A valid Bayesian approach depends on the appropriate construction of a prior. Unfortunately, it 
can be difficult to translate SME experience into the mathematical world of models, parameters, 
and statistical distributions. To address this challenge, this Best Practice offers two techniques 
to develop priors from SME inputs: (1) parameter transformation, and (2) sampling the prior. It 
is assumed the reader is familiar with the fundamental concepts of Bayesian statistics (Seick & 
Kolsti, 2022), prior distributions, and distribution sampling procedures typified by the 
Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithms (Hogg, 2018).  
 
This paper offers a step-by-step scenario to demonstrate to analysts how to apply both 
techniques for creating a suitable prior from SME inputs. Note that either or both techniques 
may be used–the flow of the paper is not meant to imply that the first technique is required to 
perform the second one. After laying out the scenario, we will transform a model’s parameters 
into new parameters that have intuitive meaning to SMEs. Next, we will depict the prior in a 
manner that is familiar to the SMEs by sampling the prior. Finally, we will pretend the first prior 
was deemed inadequate by the SMEs and generate a new one using the same process with 
updated SME inputs. This final step will illustrate how sampling the prior can create intuitive 
output for SMEs to assess the prior.  
 
Working Example 
 
This paper will walk through a scenario to illustrate the proposed techniques. In this scenario 
the test team is using logistic regression to predict a sensor’s probability of detection (PD) 
denoted by the variable 𝑝𝑝, where the only factor is range, 𝑥𝑥. The data model that describes the 
relationship between range and PD is 
 
 log �

𝑝𝑝
1 − 𝑝𝑝

� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 (1) 
 
Figure 1 depicts an example logistic regression prediction curve, in this case determined by the 
parameter values 𝛽𝛽0 = 3.296 and 𝛽𝛽1 = −0.275. For reference, note that the range where the 
PD=80% is 12, and at a range of 20 the PD is 10%. 
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Figure 1 

Example of a Curve Created by the Logistic Function 
 

To perform a Bayesian analysis, we must build a prior over the 2-dimensional (2-D) space 𝛽𝛽 =
{𝛽𝛽0,𝛽𝛽1}𝑇𝑇 , which we will call 𝑓𝑓𝛽𝛽(𝜷𝜷). Asking SMEs “what range of values should we expect for the 
parameters 𝛽𝛽0 and 𝛽𝛽1?” will probably not be productive because these parameters are not 
inherently relatable to engineering specifications or a system’s behavior. Instead, suppose you 
elicit this informative feedback from SMEs who are highly experienced with this type of system 
and application: 
  

1. “The 80% detection range is probably between 3 and 11.”  
 
2. “At a range of 20 or greater, detection is highly unlikely.” 

 
How do we turn this information into the prior which we have labeled 𝑓𝑓𝛽𝛽(𝜷𝜷)? The next section 
will describe parameter transformation (Technique #1) as a way to incorporate these 
statements into the model. Later in this paper, a graphical approach (Technique #2) will be 
illustrated that can help SMEs assess the realism of their inputs. 
 
Technique #1: Parameter Transformation 
 
Step 1: Defining the New Parameters 
Let’s define two new parameters that are more intuitive for the SME and that relate directly to 
the requirement and the SME inputs: 
 

Parameter Definition 

𝑥𝑥𝑞𝑞 The range 𝑥𝑥 at which the probability of detection equals 𝑞𝑞, which is 
chosen in advance. Given the SME inputs, 𝑞𝑞 = 0.8. 

𝑝𝑝𝑟𝑟 The probability 𝑝𝑝 at the range 𝑟𝑟, which is chosen in advance. Given 
the SME inputs, 𝑟𝑟 = 20. 
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For notation convenience we define a vector that contains the two new parameters, 𝜽𝜽 =
�𝑥𝑥𝑞𝑞 ,𝑝𝑝𝑟𝑟�

𝑇𝑇. Since there are two parameters being transformed between 𝜷𝜷 and 𝜽𝜽, two equations 
are needed. These two formulas can be obtained from the data model of Equation 1, with each 
formula corresponding to the definition of one of our new parameters. Recall that 𝑞𝑞 and 𝑟𝑟 are 
both constants with values selected by the SMEs. 
 

 

log �
𝑞𝑞

1 − 𝑞𝑞
� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑞𝑞 

 
log �

𝑝𝑝𝑟𝑟
1 − 𝑝𝑝𝑟𝑟

� = 𝛽𝛽0 + 𝛽𝛽1𝑟𝑟 
(2) 

 
Solving this system of equations provides the transformation formulas for the original 
parameters 𝜷𝜷 in terms of the two new parameters 𝜽𝜽. For notation convenience we will use 𝑮𝑮 as 
the transformation operator, so the transformation is denoted as 𝜷𝜷 = 𝑮𝑮(𝜽𝜽). Note the condition 
𝑥𝑥𝑞𝑞 ≠ 𝑟𝑟 means the SMEs must provide two mathematically distinct descriptions of system 
behavior; in other words, the two formulas cannot be built using only one piece of information. 
The formulas that make up the operator 𝑮𝑮 are  
 

 

𝛽𝛽0�𝑥𝑥𝑞𝑞 ,𝑝𝑝𝑟𝑟� = log � 𝑞𝑞
1−𝑞𝑞

� − � 𝑥𝑥𝑞𝑞
𝑥𝑥𝑞𝑞−𝑟𝑟

� �log � 𝑞𝑞
1−𝑞𝑞

� − log � 𝑝𝑝𝑟𝑟
1−𝑝𝑝𝑟𝑟

�� ,   𝑥𝑥𝑞𝑞 ≠ 𝑟𝑟  
 

𝛽𝛽1�𝑥𝑥𝑞𝑞 ,𝑝𝑝𝑟𝑟� =
log� 𝑞𝑞

1−𝑞𝑞�−log� 𝑝𝑝𝑟𝑟
1−𝑝𝑝𝑟𝑟

�

𝑥𝑥𝑞𝑞−𝑟𝑟
 ,   𝑥𝑥𝑞𝑞 ≠ 𝑟𝑟  

(3) 

 
The inverse transform 𝐺𝐺−1 can similarly be derived through some algebra to obtain 𝜽𝜽 = 𝐺𝐺−1(𝜷𝜷). 
Note that the new parameters do not permit a zero-slope solution, which occurs when 𝛽𝛽1 = 0; 
this means when using the new parameters the range must have some non-zero influence on 
PD, however small. This restriction should have no impact on the analysis because the selection 
of the data model already indicated a belief that range matters. The formulas that make up the 
inverse operator 𝐺𝐺−1 are 
 

 

𝑥𝑥𝑞𝑞(𝛽𝛽0,𝛽𝛽1) =
log � 𝑞𝑞

1 − 𝑞𝑞� − 𝛽𝛽0
𝛽𝛽1

,   𝛽𝛽1 ≠ 0 

 
𝑝𝑝𝑟𝑟(𝛽𝛽0,𝛽𝛽1) =

1
1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑟𝑟) 

 

(4) 

Step 2: Constructing the Prior with the New Parameters 
Now that we have defined parameters that match the elicited information about the system, we 
can build the prior based off the information we elicited from the SME. Since the parameters 
are independent of each other, we can construct a simple one-dimensional (1-D) prior for each 
parameter, denoted as 𝑓𝑓𝑥𝑥𝑥𝑥�𝑥𝑥𝑞𝑞� and 𝑓𝑓𝑝𝑝𝑝𝑝(𝑝𝑝𝑟𝑟). The analyst will engage with the SMEs to elicit the 
degree to which values or ranges of values for a parameter may be expected, plausible, and 
physically realistic. Previously existing data may also be incorporated. The details of this 
elicitation process are beyond the scope of this paper. Suppose for this scenario that the 
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outcome of this collaborative process is the selection of a normal distribution and a beta 
distribution for the priors of 𝑥𝑥𝑞𝑞 and 𝑝𝑝𝑟𝑟, respectively. 
 

𝑓𝑓𝑥𝑥𝑥𝑥�𝑥𝑥𝑞𝑞� = Normal(𝜇𝜇 = 7,𝜎𝜎 = 2) 
 

𝑓𝑓𝑝𝑝𝑝𝑝(𝑝𝑝𝑟𝑟)  = Beta(2, 48) 
 
The 1-D probability density functions for these two priors are shown in Figure 2. 
 

 
Figure 2 

Prior Distributions Chosen for 𝑥𝑥𝑞𝑞 and 𝑝𝑝𝑟𝑟 
 
These two independent 1-D priors can be multiplied by each other to create the 2-D prior over 
the transformed parameter space 𝜽𝜽, 𝑓𝑓𝜃𝜃�𝑥𝑥𝑞𝑞 ,𝑝𝑝𝑟𝑟� = 𝑓𝑓𝑥𝑥𝑥𝑥�𝑥𝑥𝑞𝑞�𝑓𝑓𝑝𝑝𝑝𝑝(𝑝𝑝𝑟𝑟). This joint prior 𝑓𝑓𝜃𝜃 is depicted in 
Figure 3b. 
 

 
              (a)                                                  (b) 

G 

𝑮𝑮−1 
𝜷𝜷 𝜽𝜽 
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Figure 3 
Joint Prior Distributions for the Original Parameter Space, 𝑓𝑓𝛽𝛽(𝛽𝛽0,𝛽𝛽1) (left) and the Transformed 

Parameter Space, 𝑓𝑓𝜃𝜃�𝑥𝑥𝑞𝑞 ,𝑝𝑝𝑟𝑟� (right) 
 
Step 3: Transforming the Prior 
We have so far obtained the prior distribution over the transformed parameter space 𝜽𝜽, as 
shown in Figure 3b. However, the prior distribution we are seeking is in the original parameter 
space 𝜷𝜷, as shown in Figure 3a. Fortunately, there are well-known formulas available for this 
purpose. The formula which transforms the known prior distribution 𝑓𝑓𝜃𝜃 in Figure 3b to the 
desired prior distribution 𝑓𝑓𝛽𝛽 in Figure 3a is 
 

 𝑓𝑓𝛽𝛽(𝜷𝜷) = 𝑓𝑓𝜃𝜃(𝜽𝜽)  �det� 𝑱𝑱(𝜷𝜷)� � 
 (5) 

 
where �det� 𝑱𝑱(𝜷𝜷)� � is a scalar value calculated as the absolute value of the determinant of the 
Jacobian matrix 𝑱𝑱 (Christensen, 2011). The Jacobian matrix contains the partial derivatives of 
the transformation 𝐺𝐺−1, and is numerically evaluated at the point 𝜷𝜷. In this paper’s working 
example, the transformation involves two parameters so the Jacobian matrix is a 2 × 2 matrix 
defined as 
 

 𝑱𝑱(𝜷𝜷) =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥𝑞𝑞
𝜕𝜕𝛽𝛽0

(𝜷𝜷)
𝜕𝜕𝑥𝑥𝑞𝑞
𝜕𝜕𝛽𝛽1

(𝜷𝜷)

𝜕𝜕𝑝𝑝𝑟𝑟
𝜕𝜕𝛽𝛽0

(𝜷𝜷)
𝜕𝜕𝑝𝑝𝑟𝑟
𝜕𝜕𝛽𝛽1

(𝜷𝜷)
⎦
⎥
⎥
⎥
⎤
 (6) 

 
Numerical approximation of these partial derivatives may be used if necessary, but in this 
working example the analytical derivatives are readily obtainable: 
 

 

𝜕𝜕𝑥𝑥𝑞𝑞
𝜕𝜕𝛽𝛽0

= −
1
𝛽𝛽1

 

 

𝜕𝜕𝑥𝑥𝑞𝑞
𝜕𝜕𝛽𝛽1

= −
log � 𝑞𝑞

1 − 𝑞𝑞� − 𝛽𝛽0

𝛽𝛽1
2  

 
𝜕𝜕𝑝𝑝𝑟𝑟
𝜕𝜕𝛽𝛽0

= �
1

1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑟𝑟)� �1−
1

1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑟𝑟)� 

 
𝜕𝜕𝑝𝑝𝑟𝑟
𝜕𝜕𝛽𝛽1

= �
1

1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑟𝑟)��1 −
1

1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑟𝑟)� 𝑟𝑟 = 𝑟𝑟 
𝜕𝜕𝑝𝑝𝑟𝑟
𝜕𝜕𝛽𝛽0

 

(7) 

 
Using the procedure of Equation 5 for parameter transformation, it can be verified using 
numerical integration that the volume under both priors in Figure 3 equals 1.0 as required by 
the definition of a statistical distribution. At this point, we have successfully invented new 
parameters which are more meaningful to the SMEs and constructed the 2-D prior distribution 
over both the original and new parameters.  
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Technique #2: Sampling the Prior 
 
This technique may be used regardless of whether the first technique of parameter 
transformation was employed. For the flow of this paper, we will continue with the working 
example. 
 
At this point, the prior distribution shown in Figure 3a has been constructed. It may be difficult 
for a SME to visually inspect Figure 3a and assess its validity. One effective way to assess this 
prior is to sample it, and then use the sample to create analysis products that are familiar to the 
SMEs. For example, if the SMEs are accustomed to seeing plots of detection probability versus 
range like Figure 1 then you should create that product from the sample. Specifically, you may 
consider creating the graphical and tabular products that will go into the final report. If the 
results in these familiar data products look right to the SMEs, the prior is more likely to be 
suitable. (Note: the procedure described in this section may be applied to any statistical 
distribution; here we apply it to the prior of Figure 3a, but later after data are collected, this 
same sampling and plotting procedure may be used on the posterior distribution to obtain the 
figures for the final report.)  
 
To demonstrate this technique, a sample of 5,000 points was drawn from the prior in the 
original parameter space, 𝑓𝑓𝛽𝛽(𝛽𝛽0,𝛽𝛽1) using the Metropolis-Hastings Markov Chain Monte Carlo 
(MCMC) method. These randomly sampled points are shown in Figure 4. By inspection, the 
point cloud corresponds to the contour plot of Figure 3a as it should. The sample size was 
selected somewhat arbitrarily as sufficient for this demonstration; in practice, you should follow 
published guidance to ensure adequate sample size (Hogg, 2018).  
 

 
Figure 4 

Random Points Sampled From the Prior Distribution 
 
Each of the 5,000 points plotted in Figure 4 represents a single logistic function curve as given 
in the data model of Equation 1 and as illustrated in Figure 1. Figure 5 depicts 100 of these 
curves randomly drawn from the sample of 5,000 points. The solid blue bars represent the 95% 
interval of both 1-D priors from Figure 2. As expected, approximately 95% of the curves go 
through the blue bars. These curves are more easily interpreted by the analyst and the SMEs 
than the point cloud of Figure 4. 



7 
 

 

 
Figure 5 

Subsample of Curves Sampled from the Prior. Blue Lines Depict Where 95% of the Curves Should go, 
Based on the Selected Priors 

 
As a final verification that the MCMC procedure accurately sampled the prior, Figure 6 shows 
histograms of 𝑥𝑥𝑞𝑞 and 𝑟𝑟 from the 5,000 points overlaid with the selected prior probability density 
functions (PDFs). The plots verify that the constructed prior does not significantly negate the 
statements the SMEs provided. 
 

 
Figure 6 

Histograms of Parameter Values Produced Using the Joint Prior 𝑓𝑓𝛽𝛽 
 
Technique #2: Repeated with a Different Prior 
 
Suppose SME analysis of Figure 5 reveals that the selected priors lead to a joint prior that is too 
informative; in other words, there is concern that the prior will dominate the data of the 
planned test and bias the ultimate test results. (There are tools for sizing a test to avoid this 
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situation which are outside the scope of this paper: see “Bayesian Model Checking” [Theimer, 
2022]). After the analyst and SMEs review and refine their predictions, they decide to replace 
the normal and beta distributions used as priors in the previous section with priors that impart 
more uncertainty: a semicircle distribution and a uniform distribution with the following 
parameters 
 

𝑓𝑓𝑥𝑥𝑥𝑥�𝑥𝑥𝑞𝑞� = semicircle(center = 10, width = 18) 
 

𝑓𝑓𝑝𝑝𝑝𝑝(𝑝𝑝𝑟𝑟)=uniform(𝑚𝑚𝑚𝑚𝑚𝑚 = 0,𝑚𝑚𝑚𝑚𝑚𝑚 =  0.2) 
 
One advantage of these priors is that they have bounds that we can control. For example, when 
using a normal distribution, the parameter can be any number from −∞ to ∞. In the real world, 
however, the parameter in question may have physical bounds–in this paper’s working example, 
all ranges must be non-negative, so our parameter 𝑥𝑥𝑞𝑞 must be in the region 𝑥𝑥𝑞𝑞 ≥ 0. Another 
complication comes from our transformation formulas, where we must have 𝑥𝑥𝑞𝑞 ≠ 𝑟𝑟, and for our 
scenario with a decreasing probability with range (𝛽𝛽1 < 0), we must further have 𝑥𝑥𝑞𝑞 < 𝑟𝑟 and 
𝑝𝑝𝑟𝑟 < 𝑞𝑞. These constraints can inadvertently be violated during an MCMC sampling procedure 
with our previous priors unless special rules are coded into it. However, the constraints are 
naturally satisfied by the newly selected semicircle and uniform priors. 
 
This new prior 𝑓𝑓𝛽𝛽(𝛽𝛽0,𝛽𝛽1) is sampled using MCMC as in the previous example to generate 10,000 
points. Figure 7 shows the analytical priors and the histograms from the MCMC procedure. 
Figure 8 shows 100 of the resulting prediction curves. The curves are much more spread out, 
indicating more uncertainty is built into this joint prior. The SMEs can readily compare Figures 5 
and 8 to decide which prior is more realistic. 
 
 

 
Figure 7 

Histograms of Parameter Values Produced Using the Less-Informative Prior 
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Figure 8 

A Sample of 100 Curves Using the Less-Informative Prior 
 
Conclusion 
 
The prior distribution is critical to successful application of Bayesian statistics. This Best Practice 
demonstrated the use of two techniques for translating insight elicited from SMEs into a prior: 
transformation of the original model formula parameters into new parameters that have 
meaning to the SMEs, and sampling the prior to create graphical products that are familiar and 
interpretable to the SMEs. Analysts may use either technique or both as desired. 
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